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Abstract. We present a manifestly rotational invariant formulation of the matrix product
method valid for spin chains and ladders. We apply it to two-legged spin ladders with spins
1
2 , 1 and 3

2 and different magnetic structures labelled by the exchange coupling constants,
which can be ferromagnetic or antiferromagnetic along the legs and the rungs of the ladder.
We compute ground-state energy densities, correlation lengths and string order parameters. We
present numerical evidence of the duality properties of the three different nonferromagnetic spin
1
2 ladders. We show that the long-range topological order characteristic of isolated spin 1 chains
is broken by the interchain coupling. The string order correlation function decays exponentially
with a finite correlation length that we compute. A physical picture of the spin 1 ladder is given
in terms of a collection of resonating spin 1 chains. Finally, for ladders with spin equal to or
greater than3

2 we define a class of AKLT states whose matrix product coefficients are given by
9-j symbols.

1. Introduction

The matrix product method (MPM) is a variational approach appropiate to study the ground
state (GS) and excitations of a variety of 1D lattice systems in condensed matter and
statistical mechanics. The theoretical and experimental interest of these systems has grown
spectacularly in the last few years, due to the discovery of interesting and unexpected
physical properties in spin chains and ladders.

The basic idea behind the MPM is the construction of the ground state and excitations of
1D or quasi-1D systems in a recursive way, by relating the states of the system with length
N to that of lengthN − 1. This simple idea has appeared in the past in different places.
First of all, in the Wilson’s real space renormalization group (RG) the 1D lattice is built
up by the addition of a single site at every RG step [1]. This procedure is also used in the
density matrix renormalization group method (DMRG) of White [2]. Another source of the
MPM is the well known AKLT state of the spin 1 chain [3]. This is a simple but nontrivial
example of a matrix product state, which has motivated various generalizations, see for
example, Kl̈umperet al [4], Ostlund and Rommer [5], etc. We shall follow the formulation
of the MPM due to the latter authors, which is based on the analysis of the fixed point
structure of the DMRG GS in the thermodynamic limit [5]. A closely related approach is
that of Fanneset al [6]. The MPM offers an alternative formulation of the DMRG method
in the regime where the latter reaches a fixed point after many RG iterations [7].

Whereas the DMRG is a purely numerical method, the MPM offers the possibility of an
analytical approach to elucidate the actual structure of the GS and excitations. The MPM is
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a standard variational method which determines the variational parameters by minimizing
the GS energy. Minimization problems are in general harder than diagonalization ones. In
this respect the MPM is much less adequate than the DMRG. However, we believe that the
analytical insights gained with the MPM could be used to boost the numerical precision and
applications of both the MPM and the DMRG.

In this paper we apply the MPM to the two-legged spin ladder. Spin ladders with
diagonal couplings have been studied with the MPM formulation of Klümperet al [4] in
[8]. Spin ladders were first studied as theoretical laboratories to test ideas concerning the
crossover from 1D to 2D, with the surprising result that this crossover is far from being
smooth: the even and odd ladders display quite different properties converging only when
the number of legs goes to infinity (for an introduction to the subject see [9]). Even spin
ladders are spin liquids with a finite spin gap and finite spin correlation length, while odd
spin ladders belong to the same universality class as the spin1

2 antiferromagnetic Heisenberg
chain. This has no gap and its correlations decay algebraically. Another reason to study
ladder systems is that materials actually exist with that structure and hence the theoretical
predictions can, in principle, be compared with experimental data concerning the spectrum,
susceptibility, etc.

In this paper we study five different spin ladders characterized by their local spinS = 1
2,

1 and 3
2 and the signs of the exchange of coupling constants along the legsJ‖ and the

rungsJ⊥.
In the case of the spin12 ladders we discuss the following topics: (i) the resonating

valence bond (RVB) picture of the antiferromagnetic ladder, (ii) the equivalence between
the ladder state and the Haldane state of the spin 1 chain; and (iii) the duality properties
relating the different magnetic structures.

In the case of the spin 1 ladder we show that the long-range topological order
characteristic of isolated spin 1 chains disappears and the string correlator decays
exponentially with a finite correlation length.

The study of the spin32 ladder motivates the definition of an AKLT state characterized
in terms of 9-j symbols.

We compute GS energy densities, spin correlation lengths and string order parameters
and compare our results with those in the current literature.

The organization of this paper is as follows. In section 2 we review the MPM. In
section 3 we particularize the MPM to systems which are rotationally invariant, where the
use of group theory leads to a simplification of the formalism. In section 4 we present our
numerical results concerning five different spin ladders. In section 5 we summarize our
results and present some prospects of our work. There are three appendices which contain
technical details or proofs of results presented in the main body of the paper.

2. Review of the MPM

Some of the results presented in this section are already known and can be found in [5, 6].
We also present a full account of the formulae and derivations used in [7] where the MPM
was compared with the DMRG method in the case of the antiferromagnetic spin 1 chain.

Let us consider a spin chain or a ladderBN with open boundary conditions, whereN
denotes the number of sites of a chain or the number of rungs of a ladder. To describe
the low-energy properties ofBN one introduces a collection ofm states{|α〉N }mα=1, which
form an orthonormal basis, i.e.N 〈α|α′〉N = δα,α′ . In the DMRG these states are the most
probable ones to contribute to the GS of the superblockBN−1••BRN−1 of length 2N , formed
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by adding two sites (or rungs)••, and a mirror imageBRN−1 to the original latticeBN−1.
The basic assumption of the MPM is that the basis associated withBN andBN−1 are related
in a simple manner by the equation

|α〉N =
∑
β,s

Aα,β [s]|s〉N ⊗ |β〉N−1 N > 2 (1)

where|s〉N(s = 1, . . . , m∗) denotes a complete set ofm∗ states associated to theN th site
(resp. rung) added to the chain (resp. ladder). Equation (1) has to be supplemented with
the initial data|β〉1. The quantitiesAα,β [s] are the variational parameters of the MPM, and
their determination is the central problem one has to solve. This is done by the standard
variational method. The important point about equation (1) is thatAα,β [s] does not depend
on N . Equation (1) is motivated by the truncation method used in the DMRG where
Aα,β [s] depends onN , i.e. A(N)α,β [s]. WhenN is large enough one reaches a fixed point,

i.e. A(N)α,β [s] → Aα,β [s]. In this manner the thermodynamic limit of the DMRG leads to a
translational invariant MPM state.

The condition that both|α〉N and |β〉N−1 form orthonormal basis imposes a
normalization condition onAα,β [s],∑

β,s

A∗α,β [s]Aα′,β [s] = δα,α′ . (2)

It is interesting to count how many variational parameters there are in (1). The quantities
Aα,β [s] represent a total ofm2m∗ variables. We shall assume that all of them may be
nonvanishing. The normalization constraints (2) represent a total ofm + m(m − 1)/2
constraints (m coming from the diagonal termsα = α′ andm(m − 1)/2 coming from the
off-diagonal ones). On the other hand one can rotate the basis of states{|α〉}mα=1 by an
element of the orthogonal groupO(m) reducing bym(m−1)/2 the number of independent
MPM variables. The total number of variational degrees of freedom,NA, is then given by,

NA = m2m∗ −m− 2m(m− 1)/2= m2(m∗ − 1). (3)

We show in appendix A that the set ofAα,β [s] belongs to the Grassmanian manifold:

A ∈ O(mm∗)
O(m)⊗O(m(m∗ − 1))

. (4)

As an exercise one can check that the dimension of (4) coincides withNA given in (3).
In [5] equation (1) is used to generate an ansatz for the GS of periodic chains. In this

paper we shall use this equation to generate states with open boundary conditions, in the
spirit of the DMRG. We shall show below that the set|α〉 corresponds to GSs with different
boundary conditions. The use of open boundary conditions leads to a simplification of the
MPM which is very close to the more abstract formalism proposed in [6].

2.1. Correlators of local operators

Let us use equation (1) to compute the expectation values of local operators in a recursive
way. We shall first consider a local operatorOn acting at the positionn = 1, . . . , N of the
lattice. It is easy to get from (1) the expectation value,

N 〈α|On|α′〉N =


∑
ββ ′
Tαα′,ββ ′N−1〈β|On|β ′〉N−1 for n < N∑

β

Ôαα′,ββ for n = N
(5)
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where

Tαα′,ββ ′ =
∑
s

A∗α,β [s]Aα′,β ′ [s] (6)

Ôαα′,ββ ′ =
∑
ss ′
A∗α,β [s]Aα′,β ′ [s

′]〈s|O|s ′〉. (7)

T can be identified with the operator1̂ of [5]. Equations (5)–(7) suggest interpreting
the expectation valueN 〈α|On|α′〉N as a vector labelled by the pairαα′, in which caseT
andÔ becomem2×m2 matrices. Upon iteration of (5) one finds,

N 〈α|On|α′〉N =
∑
β

(T N−nÔ)αα′,ββ . (8)

More generally, the expectation value of a product of local operators is given by,

N 〈α|O(1)n1
O(2)n2

. . .O(r)nr |α′〉N =
∑
β

(T N−n1Ô(1)T n1−n2−1Ô(2) . . . T nr−1−nr−1Ô(r))αα′,ββ (9)

whereN > n1 > n2 > · · · > nr > 1. The matrixT plays a very important role in the
MPM. Equations (5), (9) imply thatT behaves as a shift operator by one lattice space. The
basic properties ofT follow from the normalization condition (2) which can be expressed
as ∑

β

Tαα′,ββ = δα,α′ (10)

which implies thatT has a eigenvalue equal to 1. Let us call|v〉 the right eigenvector
corresponding to this eigenvalue. Equation (10) can be written in matrix notation as

T |v〉 = |v〉 vαα′ = δαα′ . (11)

On the other hand, let〈ρ| denote the left eigenvector ofT corresponding to the
eigenvalue 1, i.e.

〈ρ|T = 〈ρ| ↔
∑
αα′
ραα′Tαα′,ββ ′ = ρββ ′ . (12)

A convenient normalization of〈ρ| is given by

〈ρ|v〉 = 1↔
∑
α

ραα = 1. (13)

For later use we shall diagonalizeT as follows,

T =
∑
p

xp|vp〉〈ρp| 〈ρp|vp′ 〉 = δpp′ (14)

where |vp〉 and 〈ρp| are the right and left eigenvectors ofT with eigenvaluexp(x1 =
1, |v1〉 = |v〉, 〈ρ1| = 〈ρ|). As a matter of fact all the remaining eigenvalues ofT are less
than 1, i.e.|xp| < 1∀p 6= 1.

In the limit N →∞ one gets,

lim
N→∞
〈α|O(1)n1

O(2)n2
. . .O(r)nr |α′〉N = δαα′ 〈ρ|Ô(1)T n1−n2−1Ô(2) . . . T nr−1−nr−1Ô(r)|v〉. (15)

The delta function on the r.h.s. of this equation means that the local operatorsÔ(n)
acting in the bulk, do not modify the boundary conditions associated to the various choices
of α.

Assuming thatT is invertible, one can rewrite equation (15) in the following manner,

lim
N→∞N

〈α|O(1)n1
O(2)n2

. . .O(r)nr |α′〉N = δαα′ 〈ρ|Õ(1)(n1)Õ(2)(n2) . . . Õ(r)(nr)|v〉 (16)
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whereÕ(n) is defined as

Õ(n) = T −n−1ÔT n. (17)

Observe that̃1= 1. The r.h.s. of (16) is nothing but a spatial ordered product of local
operatorsÕ(n), which is reminiscent of the radial ordered product that appears in conformal
field theory. This connection supports the interpretation ofT as an Euclidean version of
the shift operator. Under this viewpoint the states|v〉 and 〈ρ| appear as incoming|0〉 and
outgoing vacua〈0| that are left invariant by the shift operatorT .

We have shown above that the MPM leads in the thermodynamic limit to a sort of
discretized field theory characterized by a shift or spatial transfer operatorT and local
operatorsÕ(n). We can now try to exploit this interpretation to extract some physical
quantities.

First of all let us consider the correlator of two operatorsO(1)(n1) andO(2)(n2). From
(14), (15) one has,

〈ρ|Ô(1)T n1−n2−1Ô(2)|v〉 =
∑
p

xn1−n2−1
p 〈ρ|Ô(1)|vp〉〈ρp|Ô(2)|v〉. (18)

In the limit when|n1−n2| � 1 the sum overp is dominated by the highest eigenvalue
|xp| of T for which the corresponding matrix elements〈ρ|Ô(1)|vp〉 and 〈ρp|Ô(2)|v〉 are
nonzero. Ifxp < 1 one gets a finite correlation lenghtξ given by the formula,

ξ = −1/ln|xp|. (19)

In the case wherêO(1) andÔ(2) are both the spin operatorS, it turns out that the matrix
element〈ρ|Ŝ|v〉 vanishes, and hence the spin–spin correlator is short ranged with a finite
spin correlation lengthξ given by the formula (19) with|xp| < 1. The finiteness ofξ
does indeed occur for MP ansätze which preserve the rotational invariance. If the latter is
broken, as in a Neelstate, one can still find a finite value ofξ by studying the decay of the
spin–spin correlator once the constant asymptotic value of the correlation is subtracted.

In section 3 we shall give a formula to computeξ in the case of rotational invariant
MP ans̈atzse.

Another interesting application of (16) is provided by the computation of the string
order parameter.

2.2. String order parameter

A spin 1 chain has a long-range topological order (LRTO) characterized by a nonvanishing
value of a nonlocal operatorg(∞) defined as follows [10],

g(∞) = lim
`→∞

g(`)

g(`) = 〈Sz(`)
`−1∏
k=1

eπ iSz(k)Sz(0)〉.
(20)

The AKLT state hasgAKLT (∞) = −( 2
3)

2, while the spin 1 antiferromagnetic spin chain
hasg(∞) = −0.374 325 [11]. From equation (15) we deduce the following expression for
(20),

g(`) = 〈ρ|Ŝz(êiπSz )`−1Ŝz|v〉. (21)

In appendix C we show that the operator̂eiπSz has an eigenvalue equal to 1. Denoting by
|vst〉 and〈ρst| the associated right and left eigenvectors we obtain the following expression
for the string order parameter

g(∞) = 〈ρ|Ŝz|vst〉〈ρst|Ŝz|v〉 (22)



9734 J M Román et al

which suggests thatg(∞) measures a sort of off-diagonal order.
For antiferromagnetic spin 1 ladders we shall see that the LRTO disappears and that the

correlator (20) is short ranged with a finite correlation lengthξ st.

2.3. GS energy density

Let us suppose we have a translational invariant Hamiltonian of the form,

HN =
N∑
n=1

h(1)n +
N−1∑
n=1

h
(2)
n,n+1 (23)

where h(1) is an on-site (rung) operator whileh(2) couples two nearest-neighbour sites
(rungs). We define the expectation value,

ENαα′ =N 〈α|HN |α′〉N (24)

which can be computed recursively. From equations (1), (5) one gets

ENαα′ =
∑
ββ ′
Tαα′,ββ ′E

N−1
ββ ′ +

∑
β

ĥαα′,ββ (N > 2) (25)

where ĥ = ĥ(1) + ĥ(2). The hated representation of the site Hamiltonianh(1) is given by
equation (7), while the hated representation of the Hamiltonianh(2) is given by,

ĥ
(2)
αα′,ββ ′ =

∑
γ γ ′s ′s

N−1,N 〈s2s1|h(2)N−1,N |s ′1s ′2〉N,N−1A
∗
α,γ [s1]A∗γ,β [s2]Aα′,γ ′ [s

′
1]Aγ ′,β ′ [s

′
2]. (26)

It should be clear from equations (7), (26) which is the hated representative of an
operator involving an arbitrary number of sites. Equation (25) can be conveniently written
in matrix notation as

|EN 〉 = T |EN−1〉 + ĥ|v〉 (N > 2) (27)

where|EN 〉 is a vector with componentsENαα′ . Iterating (27) one gets

|EN 〉 = (1+ T + T 2+ · · · + T N−2)ĥ|v〉 + T N−1|E1〉. (28)

The geometric series inT can be sumed up and due to the eigenvalue equal to 1 it
contributes a term proportional toN , i.e.

lim
N→∞

1

N
|EN 〉 = e∞|v〉. (29)

This equation implies that all the states|α〉N have the same energy density in the
thermodynamic limit, i.e.ENαα′ = δαα′e∞. Hencee∞ can be identified with the GS energy
per site for chains or per rung for ladders and it is given by,

e∞ = 〈ρ|ĥ|v〉 =
∑
αα′β

ραα′ ĥαα′,ββ . (30)

This is the quantity one has to minimize with respect to the MPM parameters.
The formalism presented above is closely related to the DMRG. Even though this

relation is not the main subject of this paper we shall make some remarks (see [7]).
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2.4. MPM versus the DMRG

Let us suppose that we diagonalizeρ, as am×m matrix, denoting its eigenvalues asw2
α,

i.e.

ραα′ = w2
αδαα′ . (31)

The eigenvalue equation (12) then becomes,∑
αs

w2
αAαβ [s]A∗αβ ′ [s] = δββ ′w2

β. (32)

There is a close analogy between equations (2) and (32), except for the fact that the
order of the labels is exchanged. Given the tensor product decompositions ⊗ β → α, we
shall assume that one can reverse the order between the statesα andβ in terms of ‘charge
conjugate states’αc andβc, as follows: s ⊗ αc → βc. For example, the charge conjugate
of a state with spinM is another state with spin−M. Using this concept we can impose
the following symmetry condition [12],

wαAαβ [s] = ±wβcAβcαc [s] wβc = wβ (33)

which leads to the equivalence between equations (2) and (32).
The relation between the MPM and the DMRG is made clear by the construction of the

GS of the superblockBN • BRN in the following way:

|ψ0〉 =
∑

ψαsβ |αR〉 ⊗ |s〉 ⊗ |β〉ψαsβ = wαAαβ [s]. (34)

The density matrix that inducesψαsβ on the blockBN , and which is obtained by tracing
over the states in•BRN , coincides withραα′ = w2

αδαα′ .
Condition (33) guarantees that|ψ0〉 is a state invariant under the parity transformation

that interchanges the blocksBN andBRN , while leaving invariant the site•.
It is interesting to observe that the MPM leads to a superblock of the formBN • BRN ,

rather than to the standard superblockBN • •BRN [7].

3. The MPM applied to spin ladders

In this section we shall apply the MPM to the two-legged spin ladder with a spinS at
each site of the chain. The collection|α〉N will be given by the set|JM〉N(J 6 Jmax) of
states with total spinJ and third componentM. For the sake of simplicity we have only
considered one state per angular momentaJ andM. This will allow us to show more
clearly the analytic structure of the MPM, which can later be numerically improved upon
by considering multiplicity. This has already been done in the case of spin chains in [5, 7].

The states added at each step of the MPM are the ones that appear in the tensor product
decomposition of two spinS irreps, i.e.S⊗S = 0⊕1⊕· · ·⊕2S. These states are labelled
by |λµ〉 whereλ = 0, . . . ,2S is the total spin andµ = −λ, . . . , λ is its third component.

Using these notations we propose the following recurrence relation for the states|JM〉N ,

|J1M1〉N =
∑
λJ2

AλJ1J2
|(λJ2), J1M1〉N (35)

where

|(λJ2), J1M1〉N =
∑
µ

〈λµ, J2M2|λJ2, J1M1〉|λµ〉N ⊗ |J2M2〉N−1. (36)

In (36) the quantity 〈λµ, J2M2|λJ2, J1M1〉 is the Clebsch–Gordan (CG) coefficient
corresponding to the decompositionλ ⊗ J2 → J1. Comparing equations (1) and (35)
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we obtain the following relation between the symbolsAJ1M1,J2M2[λµ] and the rotational
invariant symbolsAλJ1J2

,

AJ1M1,J2M2[λµ] = AλJ1J2
〈λµ, J2M2|λJ2, J1M1〉. (37)

The use of the rotational invariant basis considerably reduces the number of independent
variational parameters and consequently increases the power of the MPM [5, 7].

The variational parametersAλJ1J2
are subject to the CG condition,

AλJ1J2
= 0 unless|λ− J2| 6 J1 6 |λ+ J2|. (38)

Using (37) and the orthogonality properties of the CG coefficients, the normalization
conditions (2) become,∑

λ,J2

|AλJ1J2
|2 = 1 ∀J1. (39)

At this point we can just take equation (37) and plug it into the corresponding formulae
of section 2 in order to derive expectation values, the GS energy density, etc in terms of
AλJ1J2

. There is, however, a more efficient way to do this by using group theory. The
application of the Wigner–Eckart theorem will allow us to express all the results in terms
of reduced matrix elements of the operators involved as well as the 6-j symbols. In our
derivations we shall follow the same steps as in section 2, leaving the technical details to
appendix B.

3.1. Correlators of invariant tensors

Let us denote byO(k) an irreducible tensor of total angular momentumk, whose components
are labelled byO(k)M ,M = −k, . . . , k. The spin operatorsS correspond tok = 1. Let us
suppose we have two irreducible tensors with the same total angular momentak, O(k,A)(n)
andO(k,B)(m), acting at the positionsn andm ( N > n > m > 1) of the ladder. The scalar
product of these two operators is defined as

O(k,A)(n) ·O(k,B)(m) =
k∑

M=−k
(−1)−MO(k,A)M (n) ·O(k,B)−M (m). (40)

The basic result we derive in appendix B is,

N 〈J1M|O(k,A)(n) ·O(k,B)(m)|J1M〉N =
∑
J2,...,J7

T N−nJ1J2
Ô(k,A)J2,J3J4

(T n−m−1
k )J3J4,J5J6Ô

(k,B)
J5J6,J7

(41)

whereT andT (k) are defined as,

TJ1,J2 =
∑
λ

(AλJ1J2
)∗AλJ1J2

(42)

(Tk)J1J2,J3J4 =
∑
λ

(AλJ1J3
)∗AλJ2J4

(−1)λ+k+J1+J4
√
(2J1+ 1)(2J2+ 1)

{
J3 J1 λ

J2 J4 k

}
(43)

while Ô(k,B) andÔ(k,B) are defined in appendix B.
Equation (41) is the invariant version of (9) involving only two operators. In order to

obtain the thermodynamic properties of (41) we use the properties of the transfer operator
T . The normalization conditions (39) imply the following conditions onT ,∑

J2

TJ1,J2 = 1 ∀J1. (44)
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Let us callρJ the left eigenvector ofTJ1,J2 with eigenvalue 1, i.e.∑
J1

ρJ1TJ1,J2 = ρJ2. (45)

Using equations (44), (45) into (41) and takingN � 1 we get

lim
N→∞ N 〈J1M|O(k,A)(n) ·O(k,B)(m)|J1M〉N = 〈ρ|Ô(k,A)T n−m−1

k Ô(k,B)|v〉 (46)

where we use a matrix notation inJ -space with the conventionvJ = 1, ∀J . From
equation (46) we deduce that the correlation length associated to the scalar product of
two irreducible operators with angular momentumk, is given by the highest eigenvalue of
the matrixTk defined in (43). The spin–spin correlation length is obtained by looking at
the highest absolute eigenvalue ofT1.

3.2. GS energy density

The Hamiltonian of the two-legged ladder has the form proposed in (23) whereh(1) is the
rung Hamiltonian andh(2) is the leg Hamiltonian,

h(1)n = J⊥S1(n) · S2(n) (47)

h
(2)
n,n+1 = J‖(S1(n) · S1(n+ 1)+ S2(n) · S2(n+ 1)) (48)

Sa(n) is a spinS operator acting on then = 1, . . . , N rung and thea = 1, 2 leg of the
ladder.

As in (24) we define the expectation value of the ladder Hamiltonian,

ENJ =N 〈JM|HN |JM〉N. (49)

Using (35) we find

ENJ1
=
∑
J2

(TJ1,J2E
N−1
J2
+ ĥJ1,J2) (N > 2) (50)

whereĥ = ĥ(1) + ĥ(2) (ĥ(1) and ĥ(2) can be found in appendix B).
Iterating equation (50) and using the properties of the matrixT we can immediately get

the largeN limit of the energy (49),

lim
N→∞

1

N
ENJ = e∞ ∀J (51)

where the GS energy density is given by,

e∞ = 〈ρ|ĥ|v〉 =
∑
J1,J2

ρJ1ĥJ1J2. (52)

At this point let us summarize the main steps of the MP algorithm hereby proposed.
• Solve the normalization conditions (39) expressingAλJ1J2

in terms of a set of linearly
independent variational parameters.
• Find the eigenvectorρJ of the matrixT .
• Minimize the GS energy density (52) with respect to the independent variational

parameters.
We will now comment on how these three steps can be implemented.
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3.3. Solution of the normalization conditions

We shall suppose in the rest of the paper that the parametersAλJ1J2
are all real. Hence the

normalization conditions∑
λ,J2

(AλJ1J2
)2 = 1 ∀J1 (53)

imply that the set{AλJ1J2
} for J1 fixed are the coordinates of a sphere whose dimension

depends on the allowed values ofJ and the CG conditions (38). Let us callAmax
J1

the
highest coordinate, in absolute value, i.e.

Amax
J1
= Aλ0

J1L0
such that|Aλ0

J1L0
| > |AλJ1J2

|∀λ, J2. (54)

If Amax
J1

> 0 (resp.Amax
J1

< 0) we can think of it as the north (resp. south) pole of a
sphere, whose neighbourhood can be described by the stereographic coordinates,

xλJ1J2
= AλJ1J2

/Amax
J1

|xλJ1J2
| 6 1. (55)

Note that xλ0
J1L0
= 1. The remaining coordinates are the independent variational

parameters used in the minimization of the GS energy. The solution of the constraint
(53) finally reads,

AλJ1J2
= εJ1x

λ
J1J2

(∑
λ′,J ′2

(xλ
′
J1J

′
2
)2
)−1/2

εJ = ±1 (56)

whereεJ1 = 1(−1) corresponding to the north (south) pole of the above-mentioned sphere.

3.4. Determination ofρJ

The solution of the eigenvalue problem of equation (45) can be done numerically. However,
for a ladder with spinS = 1

2 it can also be solved analytically which will allow us to make
some considerations on the nature ofρJ . In the case whereS = 1

2 the allowed values for
λ are 0 and 1. Hence the unique nonvanishing entries ofAλJ1J2

areA0
JJ , A

1
JJ , A

1
JJ+1 and

A1
JJ−1. Similarly from equation (42) the nonvanishing entries ofT are TJ,J , TJ,J+1 and

TJ,J−1. The set of equations we therefore have to solve read explicitly as,

TJ,J + TJ,J+1+ TJ,J−1 = 1

ρJTJ,J + ρJ+1TJ+1,J + ρJ−1TJ−1,J = ρJ
Jmax∑
J=0

ρj = 1.

(57)

The solution of these equations is given by

ρJ = uJ∑
L uL

(58)

where

u0 = 1 uJ =
J∏
L=0

TL,L+1

TL+1,L
(J > 0) (59)

we are assuming thatJ = 0, . . . , Jmax.
Equations (58), (59) imply thatρJ is always positive, in agreement with the Perron–

Frobenius theorem applied to the matrixT , whose entries are all non-negative. In [7] it was
shown that the values ofρJ are intimately related to the eigenvalues of the density matrix
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Figure 1. Graphical representation of the MP ansatz (35) in the case of the spin1
2 ladder and

basis|JM〉N with J = 0 and 1. Each dot represents a spin1
2 . A link between two dots denotes

the formation of a singlet between the spins. Dotted lines denote symmetrization of the spins
encircled by them.

that appear in the DMRG. These and other facts suggest that the MPM is in fact equivalent
to the DMRG, especially when the number of states keptm becomes large.

This completes the presentation of the formalism.

4. Numerical results

In this section we shall apply the MPM to five different spin ladders, corresponding to
different choices of the spinS and signs of the coupling constantsJ‖ and J⊥. We
shall denote every of these ladders asAAS,AFS , andFAS , whereA and F stands for
antiferromagnetic or ferromagnetic couplings. Thus, for example,AFS is a spinS ladder
with antiferromagnetic couplings along the legs and ferromagnetic couplings along the rungs.
With these notations we will study below the following cases:AA1/2, AF1/2, FA1/2, AA1

andAA3/2. Within each case we will highlight a particular aspect, which the MPM helps
to clarify.

4.1. AA1/2 ladder: the dimer-RVB state

This is the most studied spin ladder. Its properties are well known and can be summarized
as follows. In the weak coupling regime, i.e.J⊥ � J‖, the gapless spin12 chains become
massive by the interchain coupling which is a relevant operator of dimension one [13–15].
The magnitude of the gap is proportional toJ⊥. In the intermediate coupling regime, i.e.
J⊥ ' J‖ the spin ladder can be mapped into theO(3) nonlinear sigma model (NLSM) with
no topological term [16–18]. This model is known to have a spin gap. From numerical
studies the magnitude of the spin gap1 and the spin correlation length, in the isotropic case
J⊥ = J‖ = J , are given by1 = 0.502J and ξ = 3.2 respectively [19–22]. In the strong
coupling regimeJ⊥ � J‖, the most appropiate physical picture of the GS and excitations is
given by the RVB scenario proposed in [20], and supported by DMRG [20], mean field [23]
and variational calculations [24]. In the latter work a recurrent variational ansatz (RVA) was
proposed to generate the dimer-RVB and generalizations of it. The RVA method is a MPM
based on second- and higher-order recurrent relations, while the standard MPM is based
on a first-order relation. We shall see below that the MPM applied to ladders essentially
contains the RVA, and that the numerical results are improved.

Let us first consider the case where the MPM states|JM〉N are choosen to be a singlet
and a triplet, i.e.J = 0 and 1. In this case equation (35) is depicted in figure 1. There
are a priori five nonvanishing MP parameters subjected to two normalization constraints,
leaving a total of three independent parameters.
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Figure 2. The MP parameters for the ladderAA1/2. In figures 2–10 we adopt the notation
x = |J‖/J⊥|. The curveAλJ1J2

is labelled as [J1, J2, λ].

Table 1. GS energy per site−e∞/2J⊥ of the ladderAA1/2. The first two columns are the MPM
results. The RVA results are obtained with a third-order recursion formula [24]. The mean field
and Lanczos results have been obtained in [23, 25] respectively.

J‖/J⊥ Jmax= 1 Jmax= 2 RVA Mean field Lanczos

0.0 0.375 000 0.375 000 0.375 000 0.375 000
0.2 0.383 199 0.383 199 0.383 195 0.382 548
0.4 0.409 607 0.409 608 0.409 442 0.405 430
0.6 0.453 509 0.453 513 0.452 52 0.442 424
0.8 0.510 504 0.510 523 0.507 909 0.489 552
1.0 0.575 924 0.575 970 0.571 314 0.542 848 0.578
1.25 0.664 776 0.664 867 0.657 551 0.614 473 0.6687
1.66 0.819 656 0.819 834 0.808 438 0.738 360 0.8333
2.5 1.152 056 1.152 416 1.133 84 1.002856 1.18
5.0 2.172 002 2.172 878 2.136 08 2.265

Figure 2 showsAλJ1J2
as functions ofx = J‖/J⊥. In the whole range of coupling

constants the most important amplitudes areA0
00 andA1

10 while A1
11 is essentially zero. The

latter amplitude corresponds to having only a single bond among two rungs (see figure 1),
which is forbidden in the dimer-RVB picture of [20, 24].

In table 1 we show the GS energy density obtained with the MPM forJmax = 1 and
2, together with the RVA, mean field and Lanczos results. In table 2 we give the spin
correlation length computed with the MPM and the RVA.

There is an appreciable improvement in the numerical results of the MPM respect to
the RVA, especially for the spin correlation length. However, the later quantity is still
understimated by the MPM since its exact value forJ⊥ = J‖ is given byξ = 3.2 [19–22],
while we getξ ∼ 1.4 for Jmax = 1 and 2. This shows that in order to improve the value
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Table 2. Spin correlation length of the ladderAA1/2. The first two columns are the MPM
results. The RVA results are those of [24].

J‖/J⊥ Jmax= 1 Jmax= 2 RVA

0.0 0.00000 0.0000 0.000 000
0.2 0.5300 0.5303 0.437 166
0.4 0.8057 0.8081 0.608 323
0.6 1.0652 1.0740 0.751 286
0.8 1.2753 1.2945 0.866 958
1.0 1.4282 1.4593 0.959 249
1.25 1.5572 1.6018 1.048 77
1.66 1.6802 1.7413 1.152 05
2.5 1.7903 1.8698 1.269 51
5.0 1.8747 1.9711 1.385 32

of ξ one should consider a MPM built in with several states for fixed values ofJ as is the
case of the spin 1 chain [5, 7]. Multiplicity seems to be a key ingredient of the DMRG
method which the MPM should also incorporate in order to achieve exactness.

4.2. AF1/2 ladder: relation with the spin 1 chain

The ladder with magnetic structureAF is interesting because it is intimately related to
the spin 1 chain [26]. This relation can be clearly seen in the strong coupling limit
−J⊥ � J‖, since it leads to an effective spin 1 on every rung, which are effectively
coupled antiferromagnetically along the legs. The effective Hamiltonian can be derived
from (47), (48) and reads [26],

H ladder
eff = − 1

4|J⊥|N + 1
2J‖

∑
n

Seff · Seff (60)

whereSeff(n) = S1(n) + S2(n) is the spin 1 operator acting on thenth rung. The term
proportional toJ⊥ comes from the rung Hamiltonian when diagonalized in the spin 1 sector.
This equation implies the following relation between the energy per site of theAF ladder,
eAF∞ , and the energy per site of the effective spin 1 chain,eeff,

eAF∞ = − 1
8|J⊥| + 1

4J‖e
eff
∞ . (61)

The energy density of the spin 1 chain is known to great accuracy from the DMRG
and it is given bye∞ = −1.401 4845 [11]. From this result and using equation (61) we
can compute the GS energy density of the ladder for different values ofJ⊥ and J‖ and
compare the corresponding results with the ones obtained with the MPM. If we choose
a MPM with J = 1

2 and 3
2 then the GS energy density in the range 0< −J‖/J⊥ < 5

is given by equation (61) witheeff
∞ = −1.399 659. The last value is pretty close to the

expected−1.401 4845, which indeed supports the validy of the mapping (60) in the region
|J‖/J⊥| < 5. On the other hand the spin correlation length of our MPM ansatz isξladder= 2.6
which is to be compared with the corresponding value for the spin chainξchain= 6.03 [11].
The MPM again understimates the value ofξ . Our results provide additional support for the
equivalence between theAF1/2 ladder and the antiferromagnetic spin 1 chain in the strong
and intermediate coupling regimes in agreement with other authors [26].
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Table 3. GS energy per site and correlation length of the ladderFA1/2.

−J‖/J⊥ −e∞/2J⊥ ξ

0.0 0.375 000 0.0000
0.2 0.381 754 0.5140
0.4 0.399 295 0.7577
0.6 0.424 396 1.010
0.8 0.454 891 1.277
1.0 0.489 324 1.554
1.25 0.536 374 1.895
1.66 0.619 895 2.381
2.5 0.803 434 2.992
5.0 1.376 973 3.520

Figure 3. The MP parameters for theFA1/2 ladder. We follow the same conventions as in
figure 2.

4.3. FA1/2 ladder

In the strong coupling regime the laddersFA1/2 andAF1/2 have similar GS energies and
correlation lengths (see tables 1–3). The MP parameters also display a similar behaviour,
although some of them are interchanged (see figures 2 and 3). The physical reason for this
is the common GS in the case whereJ‖ = 0, given by the coherent superposition of valence
bonds in the rungs.

The relation betweenFA1/2 andAF1/2 is part of a more general relation also involving
the ladderAA1/2 and can be established by types of transformations called dualities in [29].

4.4. Duality properties of spin ladders

On a two-legged ladder one can define three types of dualities calledU, T and S, which
mix or leave invariant the ladder’s magnetic structuresAA,AF and FA [29]. These
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Table 4. Dictionary establishing the correspondences between concepts defined on a torus and
on spin ladders [29].

Torus Spin ladder

a-cycle legs
b-cycle rungs
periodic BC ferromagnetic coupling
antiperiodic BC antiferromagnetic coupling
modular transformation bond transformation

transformations are discrete analogues of the modular transformations that mix different
spin structures of the fermions defined on a surface with the topology of a torus. We recall
that a spin structure specifies the periodic or antiperiodic boundary conditions (BC) of a
fermion along a cycle. There is a dictionary that relates the spin ladder case to the torus
case which is given in table 4 by [29],

A fermion on a torus has four possible spin structures labelled asAA,AP, PA and
PP , where for example,AP means that the corresponding fermion is antiperiodic along
the a-cycle but periodic along theb-cycle. The modular transformationsT ,U andS have
the effect of mixing or leaving invariant the spin structuresAA,AP andPA, while the
spin structurePP is left invariant under all the modular transformations [30]:

T : AA↔ AP PA↔ PA,PP ↔ PP

U : AA↔ PA AP ↔ AP,PP ↔ PP

SAP ↔ PA AA↔ AA,PP ↔ PP.

(62)

Equations (62) can be proved by using the modular properties of the theta functions [30].
In [29] it was shown, using bosonization, perturbation theory and the nonlinear sigma

model, that the spin ladders with magnetic structuresAA,AF andFA can be related by
equations similar to (62) under the translation provided by table 4, by a discrete analogue
of the modular transformations of the torus. The caseFF is trivial since the GS is simply
the fully polarized state which is left invariant under all the modular transformations, just
like the fermion withPP boundary conditions.

In this section we shall use the MPM to give further evidence for the duality or modular
properties of the spin ladders.

In the case of the torus the modular properties reflect the essential equivalence of the
fermions with different spin structures. In the case of the ladder the duality properties also
reflect the fact that the GS obtained with different choices of the signs of the exchange
coupling constants is essentially equivalent and suggests that this equivalence has possibly
a deep geometrical and/or topological origin.

Let us come now to our results. We refer to [29] for the proof of the basic equations
presented below. TheU duality maps a Hamiltonian with couplings constantsJ‖, J⊥ into
a ladder with couplings constantsJU‖ , J

U
⊥ where

JU‖ = J‖〈S1(n) · S1(n+ 1)〉/〈S1(n) · S2(n+ 1)〉
JU⊥ = J⊥.

(63)

UnderU the leg-bonds are transformed into diagonal ones while the rung-bonds are left
invariant. The signs of〈S1(n) ·S1(n+1)〉 and〈S1(n) ·S2(n+1)〉 are determined by those
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Figure 4. Graphical representation ofJU (AF) ≡ JU‖ (AF) and JU (FA) ≡ JU‖ (FA) as
computed using equations (63).

of J‖ andJ⊥ respectively. ThusU acts on the magnetic structures as follows:

AA
U→ FA

J‖(AA) > 0→JU‖ (FA) < 0

J⊥(AA) > 0→JU⊥ (FA) > 0

(64)

AF
U→ AF

J‖(AF) > 0→JU‖ (AF) > 0

J⊥(AF) < 0→JU⊥ (AF) < 0

(65)

in agreement with equations (62) when properly translated into magnetic language. In
figure 4 we showJU‖ (FA) andJU‖ (AF) as functions ofJ‖(AA) andJ‖(AF), respectively.

As shown in [29] the GS energy density of the ladder with coupling constantsJU‖ , J
U
⊥

is a lower bound of the original GS energy,

e∞(JU‖ (FA), J
U
⊥ (FA)) 6 e∞(J‖(AA), J⊥(AA))

e∞(JU‖ (AF), J
U
⊥ (AF)) 6 e∞(J‖(AF), J⊥(AF)).

(66)

In figure 5 we show the validity of these inequalities, which in the strong coupling limit
almost become identities. In figure 6 we show the correlation lengths for bothAA and
the transformedFA ladders. Figures 5 and 6 show that in the strong coupling regime the
laddersAA andFA areU -dual while the ladderAF is self-U -dual.

TheT transformation consists in the replacement of the vertical bonds by diagonal ones,
which leads to

J T‖ = J‖
J T⊥ = J⊥〈S1(n) · S1(n+ 1)〉/〈S1(n) · S2(n+ 1)〉. (67)
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Figure 5. GS energy per site of theAA andAF ladders and theirU -dual models. Observe that
the inequalities (66) are indeed satisfied.

Figure 6. Spin correlation lengths of theAA ladder and itsU dual.

In figure 7 we plot the energies associated to theFA ladder and itsT transformed,
which satisfies the inequality,

e∞(J T‖ (FA), J
T
⊥ (FA)) 6 e∞(J‖(FA), J⊥(FA)). (68)

The convergence of both curves in the weak coupling together with the bosonization
arguments employed in [29] allow us to conclude that in the weak coupling regime theFA

ladder is self-T -dual whileAA andAF ladders areT -dual in agreement with the magnetic
analogue of (62).
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Figure 7. GS energy per site of theAF ladder and itsT dual given by theFA ladder. Notice
that inequality (68) is satisfied.

Finally, the S transformation is defined by the replacement of vertical bonds by
horizontal ones and vice versa,

J S‖ = 1
2J⊥〈S1(n) · S2(n)〉/〈S1(n) · S1(n+ 1)〉

J S⊥ = 2J‖〈S1(n) · S1(n+ 1)〉/〈S1(n) · S2(n)〉.
(69)

The factors 2 and12 are explained by the fact that there are two leg-bonds for each rung-bond.
In figure 8 we plot the energies of theAA ladder and its transformation which satisfy

the inequality,

e∞(J S‖ (AA), J
S
⊥(AA)) 6 e∞(J‖(AA), J⊥(AA)). (70)

Note that in the regionJ‖ ∼ 0.7J⊥ both energies get very close. In the crossing point of
figure 8 the exchange energies associated to the rungs and the legs are the same. Figure 9
shows the spin correlation length for theAA ladder and itsS transformed, displaying the
same pattern as figure 8. We conclude that in the intermediate coupling regime theAA

ladder is self-dual underS. This is a rather neat characterization of the GS of the usual
antiferromagnetic ladder, whose GS is thought to be a realization of the RVB state. Indeed
the GS of the 2×2 cluster withJ⊥ = J‖ > 0 is indeed invariant underS which interchanges
the rungs and the legs.

The discrete duality transformations allow us to understand the relations between ladders
with different magnetic structures on a geometrical level. In the case of fermions living on
a torus the modular group is a powerful tool to construct, for example, modular invariant
partition functions. Spin ladders are rather different physical systems but one may wonder
whether the discrete dualities could be exploited to further described properties of the
ladders. This question requires further investigation which is beyond the purposes of this
paper.
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Figure 8. GS energy per site of theAA ladder and itsS dual. Notice that the inequality (70)
is satisfied.

Figure 9. Spin correlation length of theAA ladder and itsS dual.

4.5. AA1 ladder: short-range string order

In table 5 we show the GS energy density and the spin correlation length of the ladderAA1.
Observe that the correlation length is longer that the one of the spin1

2 ladder.
As mentioned in the introduction a spin 1 chain has a long-range topological order

(LRTO) characterized by a nonvanishingg(∞). In appendix C we give an analytical
expression forg(∞) in terms of the MP parameters of the spin 1 chain.

However, when two spin 1 chains are coupled antiferromagnetically the LRTO
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Table 5. GS energy per site and correlation length of theAA1 ladder.

J‖/J⊥ −e∞/2J⊥ ξ

0.0 1.000 000 0.000 00
0.2 1.055 719 1.011 4
0.4 1.206 557 1.831 8
0.6 1.407 358 2.385 2
0.8 1.631 166 2.676 2
1.0 1.867 327 2.822 7
1.25 2.172 905 2.904 2
1.66 2.688 880 2.928 6

Figure 10. Plots of the spin correlation lengthξ and the string correlation lengthξst of the
ladderAA1. The latter quantity is computed using equations (125) and (126).

disappears and the string order parameterg(`) decays exponentially as e−`/ξ
st
. We call

ξ st the string correlation length, and its value together with the spin correlation length are
shown in figure 10 as functions of the ratioJ‖/J⊥. In the weak coupling limit where
J‖/J⊥ → ∞ we expectξ st to diverge, recovering in that way the LRTO of the uncoupled
chains. The value ofξ st is obtained by the formula (19) withxp the highest eigenvalue of

the operatorêiπSz1 (see appendix C).
An intuitive way to understand the breaking of the LRTO is given by the AKLT picture

of [3]. An AKLT state is a valence bond state where every spin 1 is represented as a
symmetrized product of two spins12, such that everyone of these ‘elementary’ spins is linked
by a bond to one of the spins12 on its neighbours. In this way all the spins of the chain are
connected by a sucession of nearest-neighbour links. When we couple antiferromagnetically
two spin 1 chains there is the possibility that two parallel bonds along the legs become two
parallel bonds along the rungs, as shown in figure 11. Thus, the two infinite parallel arrays
of connected bonds, characteristic of the uncoupled chains, effectively break into a collection
of fluctuating islands whose size is of the order ofξ st. Everyone of these islands is a sort



The matrix product approach to quantum spin ladders 9749

Figure 11. Pictorical representation of a possible AKLT state of the spin 1 ladder.

Table 6. GS energy per site and correlation length of theAA3/2 ladder.

J‖/J⊥ −e∞/2J⊥ ξ

0.0 1.875 000 0.0000
0.2 2.054 760 1.8760
0.4 2.449 827 3.3099
0.6 2.911 353 3.9475
0.8 3.400 562 4.2401
1.0 3.904 988 4.3829
1.25 4.548 607 4.4624
1.66 5.623 131 4.4900

of closed spin 1 chain (figure 11).
The finite value ofξ st at the origin of figure 10 is due to the fact that eiπSz1 has indeed

a finite value when computed on the singlet formed by two spins 1 on a rung,

〈eiπSz1〉rung=
∑

m=±1,0

(−1)m〈1m1−m|00〉2 = − 1
3 (71)

which leads toξ st(J‖ = 0) = 1/ln3. Figure 10 suggests the existence of three different
regimes. In the weak coupling regime whereξ st > ξ the ladder can be effectively considered
as a collection of weakly interacting closed spin 1 chains. In the strong coupling regime
whereξ st > ξ the bonds are mainly distributed along the rungs and the interbond coupling
is small. Finally there is an intermediate region, withξ st < ξ , where the islands of spins
interact strongly with their neighbours.

4.6. TheAA3/2 ladder

In table 6 we give the GS energy densities and spin correlation lengths of the ladderAA3/2.
As one may expect the correlation length is longer than for the spin 1 and1

2 ladders. This
fact agrees with the results obtained by mapping the spin ladders into the NLSM [16–18].

4.7. AKLT states for ladders

The spin 3
2 two-legged ladder offers the possibility of constructing an AKLT state with a

valence bond connecting every spin3
2 to its three nearest neighbours. More generally, let

us consider a ladder with spinS > 3
2 and three integersp, q, r > 1 satisfying the equation

2S = p + q + r. Then one can define an AKLT state, denoted by the triplet(p, q, r), by
linking the 2S ‘elementary spinors’ of each spin to the ones in its neighbours following the
pattern shown in figure 12. The AKLT states(p, q, r) and(q, p, r) whenp 6= q correspond
to dimerized ladders and they differ by the translation of one unit space along the legs.
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Figure 12. Graphical representation of a generic AKLT state of a ladder
denoted as(p, q, r). There are a total ofp + q + r dots inside every
circle representing a total spinS = (p + q + r)/2. The corresponding MP
parameters are given by equation (75).

The spin 3
2 AKLT ladder corresponds in the above notation to(1, 1, 1). This state

contains in fact a spin 0 and a spin 1 state which can be generated by the MP equation (35)
where the amplitudesAλJ1J2

are given by 9-j symbols,

AλJ1J2
= 3

√
(2J2+ 1)(2λ+ 1)

{ 1/2 1/2 J2

3/2 3/2 λ

1 1 J1

}
. (72)

In this equationJ1, J2 = 0 and 1, whileλ = 0, 1, 2.
The proof of (72) follows from the definition of the 9-j symbols as the coefficients

that give the change of basis when coupling in two different ways four angular momenta,
namely [31]

ψ(j1j3(J13)j2j4(J24)J ) =
∑
J12J34

√
(2J12+ 1)(2J34+ 1)(2J13+ 1)(2J24+ 1)

×
{
j1 j2 J12

j3 j4 J34

J13 J24 J

}
ψ(j1j2(J12)j3j4(J34)J ) (73)

whereψ(j1j3(J13)j2j4(J24)J ) is a state with angular momentumJ obtained by the tensor
product decompositionJ13 ⊗ J24 → J , which in turn is obtained by the decompositions
j1⊗ j3→ J13 andj2⊗ j4→ J24.

One may check that the normalization conditions (39) hold for (72), as a consequence
of the orthogonality conditions satisfied by the 9-j symbols [31]. The GS energy per site
and the spin correlation length of the AKLT state (72) in the case whereJ‖ = J⊥ = J are
given by,

eAKLT
∞ /2J = −3.263 536 ξAKLT = 1.116 221. (74)

This state has a much shorter correlation length than the MP state that minimizes the
GS energy of theAA3/2 ladder (see table 6). The GS energies of both states are also quite
different. We conclude from these facts that the spin3

2 AKLT state does not give a good
description of the GS of theAA3/2 ladder.

A generic AKLT state of the type(p, q, r) whenp 6= q has to be described by alternating
MP amplitudes depending on the evenness of the site. Thus for even sites one has

AλJ1J2
= (q + r + 1)

√
(2J2+ 1)(2λ+ 1)

{ p

2
p

2 J2

S S λ
q+r

2
q+r

2 J1

}
(75)

whereJ1 = 0, . . . , q; J2 = 0, . . . , p andλ = 0, . . . ,2S−r. For odd sites the corresponding
MP amplitudes are obtained by interchangingp andq in (75).

The fact that the MP amplitudes turn out to be given by 9-j symbols suggests a possible
group theoretical interpretation of the AKLT states of the ladders. It would be interesting to
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know what the values of the density matrixρJ as computed from equations (42) and (44) are.
Another suggestion is that it might be possible to obtain AKLT states using the 9-j symbols
of quantum groups in analogy to the construction of the IRF models in statistical mechanics
in terms of the 6-j symbols of quantum groups (for a review on this subject see [32]).

5. Conclusions and prospects

Let us summarize the main results obtained in this paper.
• We have further developed the rotational invariant formulation of [5, 7]. By making

use of all the powers of group theory we give explicit and managable formulae of the GS
energy density, the correlation length and the string order parameter, in terms of invariant
objects like 6-j symbols, etc. This reduces considerably the number of independent MP
parameters used in the minimization process. Our work gives the MP version of the
IRF-DMRG method developed in [33], where it was shown how to apply the DMRG to
Hamiltonians invariant under a Lie group or a quantum group as for example the Heisenberg
model or the quantum group invariantXXZ chain.
• We have improved the numerical results concerning the GS energy density and spin

correlation length obtained previously with other approximate methods as those of [24, 23].
In particular, we have proved that the ansätzse generated by first-order recursion relations,
like the MPM, are better than those generated by second- or higher-order recursion relations
as those of [24]. Moreover, MP ansätzse with multiple states per spin greatly improved the
numerical results. In this sense the multiplicity of states kept in the construction seems to
be a key ingredient in the DMRG.
• We have shown the equivalence between the ladderAF1/2 and the spin 1

antiferromagnetic Heisenberg chain. The MPM applied to both systems shows strong
numerical coincidences for the GS energy and correlation length. This agrees with the
results obtained previously by other methods [26–28].
• We have found numerical evidences for the duality properties proposed in [29] for

the spin ladders with magnetic structuresAA,AF andFA.
• We have shown that there is a breaking of the long range topological order of the

spin 1 chains when they are coupled in a two-legged ladder. A physical picture of the GS
of the spin 1 ladder is given in terms of resonating closed spin 1 chains.
• We have constructed AKLT states for two-legged ladders with spinS > 3

2, showing
that the corresponding MP parameters are given by 9-j symbols. This gives a group
theoretical meaning to the MP variational parameters.
• Besides using the MPM as a computational tool to solve physical problems we have

tried to make further progress in the formal understanding of why the DMRG works so
well. Elaborating the ideas first presented in [7] we suggest that one can possibly give a
derivation of the infinity system algorithm by starting from the MPM. As we have shown
in section 2, both in the DMRG and the MPM, there appears a density matrix playing a
central role.

In summary we have shown the adequacy of the MPM to study the two-legged ladder,
especially in the strong and intermediate coupling regimes. This is made possible by the
fact that these ladders are finitely correlated. Hence, one may expect that even spin ladders
with a finite number of legs could be described by the same technique, although with a
larger number of statesm. On the other hand, odd-legged ladders are not finitely correlated
and they cannot be properly described in the largeN limit within the actual formulation of
the MPM. An interesting problem is the application of the MPM to 2D systems, which can
be thought of as ladders with a large number of legs. It is clear that one should choose a
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collection of the most representative states for the rungs to be added after each iteration of
the MP recurrence equation.
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Appendix A: The MP ansatz and the Grassmannian manifolds

In this appendix we shall give a proof of equation (4) which gives a precise mathematical
meaning of the coefficientsAαβ [s] defining a generic MP ansatz.

In the r.h.s. of equation (1) we have a generic vector of dimensionn = mm∗ while
on its l.h.s. the vector has dimensionm. Hence equation (1) amounts to a choice of a
m-dimensional linear subspace ofRn in the case ofAαβ [s] real or a complex subspace of
Cn in the case ofAαβ [s] complex. Let us call the set of all these subspaces asMn,m(R)
andMn,m(C) for Aαβ [s] real and complex, respectively. The groupO(n) (resp.U(n)) acts
transitively onMn,m(R) (resp.Mn,m(C)), which leads to the result [34]

Mn,m(R) = O(n)

O(m)⊗O(n−m) (76)

Mn,m(C) = U(n)

U(m)⊗ U(n−m). (77)

In (76) the groupsO(m) andO(n − m) are identified with the subgroups ofO(n)
consisting of those elements leaving fixed every vector of a given(n − m)-dimensional
subspace and of its orthogonal complement, respectively. Similar arguments lead to
equation (77).Mn,m(R)(Mn,m(C)) are called the real (complex) Grassmannian manifolds.
Taking n = mm∗ in (76) we get equation (4).

As a simple illustration of these eqs. let us consider the case of a MP ansatz that
generates a single state|GS〉N (m = 1), i.e.

|GS〉N =
∑
s

A[s]|s〉N ⊗ |GS〉N−1 (78)

with A[s] ∈ R. The normalization condition (2) reads,

m∗∑
s=1

A[s]2 = 1. (79)

ThusA[s] belongs to the(m∗ − 1)-dimensional sphereSO(m∗)/SO(m∗ − 1). Upon
the identification ofA[s] and−A[s] we get the(m∗ −1)-real proyective spaceMm∗,1(R) =
SO(m∗)/SO(m∗ − 1)⊗ Z2.
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Appendix B: The rotational invariant MPM

Group theoretical preliminaries

Before we give the proof of the main formulae of section 3 we shall review some basic
definitions and results in group theory [31].

An irreducible tensor with angular momentumk is an operatorT (k)M (M = k, . . . ,−k)
which satisfies the following commutation relations with the total angular momentum
operatorJ ,

[Jz, T
(k)
M ] = MT (k)M

[Jx ± iJy, T (k)M ] =
√
k(k + 1)−M(M ± 1)T (k)M±1.

(80)

The scalar product of two irreducible tensorsT (k) andU (k) with the same spink is
defined by,

T (k) ·U (k) =
k∑

M=−k
(−1)−MT (k)M U

(k)
−M. (81)

The Wigner–Eckart theorem reads,

〈JM|T (k)µ |J ′M ′〉 = (−1)J−M
(
J k J ′

−M µ M ′

)
(J ||T (k)||J ′) (82)

where the 3-j symbol is related to the CG coefficient by(
J k J ′

−M µ M ′

)
= (−1)J−k−M

′

√
2J ′ + 1

〈J −Mkµ|J ′ −M ′〉. (83)

The quantity(J ||T (k)||J ′) in (82) is called the reduced matrix element of the operator
T (k). As an example we give the reduced matrix element of the spin operatorS,

(S||S||S) =
√
S(S + 1)(2S + 1). (84)

Let |α1j1α2j2JM〉 be a state with total angular momentaJ and third componentM,
appearing in the tensor product decomposition(α1j1)⊗ (α2j2), where(αj) denotes a state
with total angular momentumj and α labels other possible quantum numbers. We shall
require the following results:

〈α1j1α2j2JM|(T (k)1 · T
(k)

2 )|α′1j ′1α′2j ′2J ′M ′〉 = δJJ ′δMM ′(−1)j2+J+j ′1
{
j1 j2 J

j ′2 j ′1 k

}
×(α1j1||T (k)1 ||α′1j ′1)(α2j2||T (k)2 ||α′2j ′2) (85)

(α1j1α2j2J ||T (k)1 ||α′1j ′1α′2j ′2J ′) = δα2α
′
2
δj2j

′
2
(−1)j1+j2+J ′+k

{
j1 J j2

J ′ j ′1 k

}
×
√
(2J + 1)(2J ′ + 1)(α1j1||T (k)1 ||α′1j ′1) (86)

(α1j1α2j2J ||T (k)2 ||α′1j ′1α′2j ′2J ′) = δα1α
′
1
δj1j

′
1
(−1)j1+j ′2+J+k

{
j2 J j1

J ′ j ′2 k

}
×
√
(2J + 1)(2J ′ + 1)(α2j2||T (k)2 ||α′2j ′2). (87)

The subindices 1 and 2 inT (k)1 andT (k)2 mean that the corresponding operators acts on
the states labelled as(α1j1) and(α2j2) respectively.
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Recursion relations for the scalar product of invariant tensors

Proof. We want to prove equation (41).
Using equation (35) we easily get forN > n > m,

N 〈J1M|O(k,A)(n) ·O(k,B)(m)|J1M〉N =
∑
J2

TJ1,J2N−1〈J2M|O(k,A)(n) ·O(k,B)(m)|J2M〉N−1

(88)

whereTJ1,J2 is given in (42). Iterating (88)N−n times we reach the situation whereN = n.
This produces the termT N−nJ1,J2

in (41). Next we need to compute the matrix element,

n〈J1M|O(k,A)(n) ·O(k,B)(m)|J1M〉n =
∑

J2J3λ2λ3

(A
λ2
J1J2
)∗Aλ3

J1J3

×n〈(λ2J2), J1M|O(k,A)(n) ·O(k,B)(m)|(λ3J3), J1M〉n. (89)

The matrix element on the r.h.s. of (89) has the form described in (85), which yields,

n〈(λ2J2), J1M|O(k,A)(n) ·O(k,B)(m)|(λ3J3), J1M〉n = (−1)J1+J2+λ3

{
λ2 J2 J1

J3 λ3 k

}
×n(λ2||O(k,A)(n)||λ3)nn−1(J2||O(k,B)(m)||J3)n−1. (90)

Introducing (90) into (89) we find

n〈J1M|O(k,A)(n) ·O(k,B)(m)|J1M〉n =
∑
J2J3

Ô(k,A)J1,J2J3n−1(J2||O(k,B)(m)||J3)n−1 (91)

where

Ô(k,A)J1,J2J3
=
∑
λ2,λ3

(A
λ2
J1J2
)∗Aλ3

J1J3
× (−1)λ3+J1+J2

{
λ2 J2 J1

J3 λ3 k

}
(λ2||O(k,A)||λ3). (92)

The next step is to apply the MP ansatz (35) to

n(J1||O(k,B)(m)||J2)n =
∑
λ1λ2

(A
λ1
J1J3
)∗Aλ2

J2J4
×n ((λ1J3), J1||O(k,B)(m)||(λ2J4), J2)n. (93)

For n > m we can use (87), obtaining

n((λ1J3), J1||O(k,B)(m)||(λ2J4), J2)n = δλ1λ2(−1)λ1+J1+J4+k√(2J1+ 1)(2J2+ 1)

×
{
J3 J1 λ1

J2 J4 k

}
n−1

(J3||O(k,B)(m)||J4)n−1. (94)

Plugging (94) into (93) we get,

n(J1||O(k,B)(m)||J2)n =
∑
J3J4

(Tk)J1J2,J3J4n−1(J3||O(k,B)(m)||J4)n−1, (n > m) (95)

where(Tk)J1J2,J3J4 is defined in (43). The termT n−m−1
k in (41) results from the iteration of

(95) until one getsn = m. In the case whenn = m in (94) we should apply (86) obtaining

n((λ1J3), J1||O(k,B)(n)||(λ2J4), J2)n = δJ3J4(−1)λ1+J2+J3+k√(2J1+ 1)(2J2+ 1)

×
{
λ1 J1 J3

J2 λ2 k

}
n

(λ1||O(k,B)(n)||λ2)n. (96)

Introducing (96) into (93) we get,

n(J1||O(k,B)(n)||J2)n =
∑
J3

Ô(k,B)J1J2,J3
(97)
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where

Ô(k,B)J1J2,J3
=
∑
λ1λ2

(A
λ1
J1J3
)∗Aλ2

J2J3
(−1)λ1+J2+J3+k

×
√
(2J1+ 1)(2J2+ 1)

{
λ1 J1 J3

J2 λ2 k

}
(λ1||O(k,B)||λ2). (98)

This ends the proof of equation (41). �

Recursion relation of the energy expectation values

We shall not give here the explicit proof of equation (50) since it is quite analogous to the
one performed in the previous paragraph. We shall simply state the result.

The matrixĥJ1,J2 appearing in (50) is given by the sum

ĥJ1,J2 = ĥ(1)J1,J2
+ ĥ(2)J1,J2

(99)

where

ĥ
(1)
J1,J2
= J⊥

∑
λ

( 1
2λ(λ+ 1)− S(S + 1))|AλJ1J2

|2 (100)

ĥ
(2)
J1,J4
= 2J‖

∑
J2J3J4,λ1,...,λ4

(A
λ1
J1J2
A
λ3
J2J4
)∗Aλ2

J1J3
A
λ4
J3J4
× (−1)1+λ3+λ4ξ

λ2λ1
J2J3J1

ξ
λ3λ4
J3J2J4

(101)

and

ξ
λ1λ2
J1J2J3

= (−1)J1+J3
√
(2J1+ 1)(2λ1+ 1)(2λ2+ 1)

×
√
S(S + 1)(2S + 1)

{
λ1 λ2 1
J1 J2 J3

}{
λ1 λ2 1
S S S

}
where the following property for the 6-j symbol with an element equal to 1 has been used
[31]: {

λ1 λ2 1
J1 J2 J3

}
=
{
λ2 λ1 1
J2 J1 J3

}
.

Appendix C: the string order parameter of spin 1 chain and ladder

Let us first consider the spin 1 chain. The MP ansatz is given simply by,

|J1M1〉N =
∑
J2

AJ1J2|(1J2), J1M1〉N (102)

where the state|(1J2), J1M1〉N reads as in (36) withλ = 1. We shall choose half-integer
values of the angular momentaJ1 andJ2 which amounts to have a spin12 at one end of the
chain [5, 7].

We shall next show that the operatorsT = 1̂ andêiπSz both have an eigenvalue equal
to 1. Let us first of all explicitly write their components,

(T )J1M1J
′
1M
′
1,J2M2J

′
2M
′
2
= δM1−M2,M

′
1−M ′2AJ1J2AJ ′1J

′
2

×〈1M1−M2, J2M2|J1M1〉〈1M ′1−M ′2, J ′2M ′2|J ′1M ′1〉 (103)

(êiπSz )J1M1J
′
1M
′
1,J2M2J

′
2M
′
2
= δM1−M2,M

′
1−M ′2(−1)M1−M2AJ1J2AJ ′1J

′
2

×〈1M1−M2, J2M2|J1M1〉〈1M ′1−M ′2, J ′2M ′2|J ′1M ′1〉. (104)
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The normalization conditions onAJ1J2 read∑
J2

A2
J1J2
= 1 ∀J1. (105)

Using these equations and the properties of the CG coefficients, one can verify thatv

andvst defined as

vJ1M1J
′
1M
′
1
= δJ1J

′
1
δM1M

′
1

vst
J1M1J

′
1M
′
1
= δJ1J

′
1
δM1M

′
1
(−1)M1−1/2 (106)

are right eigenvectors with eigenvalue 1 of the matricesT andêiπSz respectively.
Similarly, the left eigenvectors associated to this eigenvalue are given by,

ρJ1M1J
′
1M
′
1
= δJ1J

′
1
δM1M

′
1
ρJ1/(2J1+ 1)

ρst
J1M1J

′
1M
′
1
= δJ1J

′
1
δM1M

′
1
(−1)M1−1/2ρJ1/(2J1+ 1)

(107)

whereρJ is the left eigenvector with eigenvalue 1 of the matrixTJ1J2 = A2
J1J2

.
According to equation (22) the string order parameterg(∞) is given by the product of

two matrix elements which we compute below.
Let us first consider,

〈ρ|Ŝz|vst〉 =
∑

ρJ1M1J
′
1M
′
1
ŜzJ1M1J

′
1M
′
1,J2M2J

′
2M
′
2
vst
J2M2J

′
2M
′
2
. (108)

The hated version ofSz is given by,

(Ŝz)J1M1J
′
1M
′
1,J2M2J

′
2M
′
2
= δM1−M2,M

′
1−M ′2(M1−M2)AJ1J2AJ ′1J

′
2

×〈1M1−M2, J2M2|J1M1〉〈1M ′1−M ′2, J ′2M ′2|J ′1M ′1〉 (109)

which together with (107), (108) lead to,

〈ρ|Ŝz|vst〉 =
∑ ρJ1

2J1+ 1
A2
J1J2
× (−1)M2−1/2(M1−M2)(〈1M1−M2, J2M2|J1M1〉)2. (110)

Similarly we get

〈ρst|Ŝz|v〉 =
∑ ρJ1

2J1+ 1
A2
J1J2
× (−1)M1−1/2(M1−M2)(〈1M1−M2, J2M2|J1M1〉)2. (111)

Observing that

(−1)M1−1/2(M1−M2) = −(−1)M2−1/2(M1−M2) (112)

whereM1−M2 = 0,±1, we obtain

〈ρst|Ŝz|v〉 = −〈ρ|Ŝz|vst〉 (113)

which in turn implies

g(∞) = −(〈ρ|Ŝz|vst〉)2. (114)

Let us return to equation (110), which can be written as∑ −ρJ1

2J1+ 1
A2
J1J2
(−1)M1−1/2〈(1J2)J1M1|Sz1|(1J2)J1M1〉 (115)

whereSz1 denotes the spin operator acting on the spin 1. Using the Wigner–Eckart theorem
we get,

〈(1J2)J1M1|Sz1|(1J2)J1M1〉 = (−1)J1−M1

(
J1 1 J1

−M1 0 M1

)
((1J2)J1||S1||(1J2)J1)

= M1√
J1(2J1+ 1)(J1+ 1)

((1J2)J1||S1||(1J2)J1). (116)
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The reduced matrix element appearing in (116) can be computed using (86),

((1J2)J1||S1||(1J2)J1) =
√

6(−1)J1+J2(2J1+ 1)

{
1 J1 J2

J1 1 1

}
=
√

2J1+ 1(2+ J1(J1+ 1)− J2(J2+ 1))

2
√
J1(J1+ 1)

. (117)

Substituting (116), (117) into (115) and performing the sum overM1 with the aid of
the formula,

J∑
M=−J

M(−1)M−
1
2 = (J + 1

2)(−1)J−1/2 (J : half integer) (118)

we finally get

〈ρ|Ŝz|vst〉 = 1
4

∑
ρJ1A

2
J1J2
(−1)J1−1/2× 2+ J1(J1+ 1)− J2(J2+ 1)

J1(J1+ 1)
. (119)

From equations (114), (119) we immediately get the value ofg(∞) in the AKLT case,

AKLT :A 1
2

1
2
= 1→ g(∞) = −( 2

3)
2. (120)

In [7] the spin 1 Heisenberg chain was studied with a MP ansatz built up with two
states withJ = 1

2 and 3
2. The values of the MP parameters obtained in [7] are reproduced

below

A 1
2

1
2
= 0.988 995 A 1

2
3
2
= 0.147 95

A 3
2

1
2
= −0.952 887 A 3

2
3
2
= −0.303 325

ρ 1
2
= 0.976 46 ρ 3

2
= 0.023 539.

(121)

Introducing (121) into equations (114) and (119) we getg(∞) = −0.387, which can be
compared with the exact value given by−0.374 325 [11]. In [5] the spin 1 chain was studied
with a MP ansatz with two spin12 and two spin3

2 states, which yieldsg(∞) = −0.3759.
This shows again that MP ansätzse with multiplicity improve considerably the accuracy of
the numerical results [5, 7].

Let us go now to the spin 1 ladder. In section 4 we gave an intuitive argument which
suggested that the LRTO of the single spin 1 chains is destroyed by the interchain coupling.
Next we show that this is indeed what happens.

Let us first write equations (103), (104) in the case of ladders

(T )J1M1J
′
1M
′
1,J2M2J

′
2M
′
2
= δM1−M2,M

′
1−M ′2

∑
λ

AλJ1J2
AλJ ′1J

′
2

×〈λM1−M2, J2M2|J1M1〉〈λM ′1−M ′2, J ′2M ′2|J ′1M ′1〉 (122)

(êiπSz1)J1M1J
′
1M
′
1,J2M2J

′
2M
′
2
= δM1−M2,M

′
1−M ′2

∑
λλ′
AλJ1J2

Aλ
′
J ′1J

′
2

×〈1M1−M2, J2M2|J1M1〉〈1M ′1−M ′2, J ′2M ′2|J ′1M ′1〉
×〈λM1−M2|eiπSz1 |λ′M1M2〉 (123)

whereSz1 denotes the spin operator acting on the first leg of the ladder. The vectorvJ1M1J
′
1M
′
1

given in (106) is an eigenvector with eigenvalue 1 of the matrixT defined by (122). This
property is a consequence of the normalization condition (39). For the spin 1 chain the latter
condition also guarantees the existence of an eigenvalue 1 of the operator (104). However,
this is not generally the case for the operator (123).
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The last matrix element in (123) can be deduced by expressing the state|λµ〉 of the
rung in terms of the spin 1 states of every site,

|λµ〉 =
∑
m1m2

|1m1〉1|sm2〉2〈1m11m2|λµ〉. (124)

We thus get

(êiπSz1)J1M1J
′
1M
′
1,J2M2J

′
2M
′
2
= δM1−M2,M

′
1−M ′2

∑
λλ′m1m2

AλJ1J2
Aλ

′
J ′1J

′
2
(−1)m1

×〈1M1−M2, J2M2|J1M1〉〈1M ′1−M ′2, J ′2M ′2|J ′1M ′1〉
×〈1m11m2|λM1−M2〉〈1m11m2|λ′M1−M2〉〉. (125)

We can actually set upM1 = M ′1 andM2 = M ′2 in (125) since in the computation of
the string order parameter, the third component of the angular momenta is preserved. We
have computed the highest eigenvaluexst of the matrix (125), which turns out to be smaller
than 1. This shows thatg(`) decays exponentially with a correlation lengthξ st whose value
is obtained by the equation

ξ st = −1/ln|xst|. (126)
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